EXPERIMENTAL HIGH SPEED CMOS IMAGE SENSOR SYSTEM & APPLICATIONS

Ali Ozer Ercan, Feng Xiao, Xinqiao Liu SukHwan Lim, Abbas El Gamal and Brian Wandell

Stanford University

Background

- CMOS image sensors offer:
 - Low cost and low power consumption
 - High frame rate non-destructive readout
 - Integration of capture with analog and digital signal processing on same chip
- Enable novel still and video rate imaging applications:
 - Dynamic range extension (Liu SPIE'01, Yang JSSC'99)
 - Motion-blur prevention (Liu ICASSP'01)
 - Accurate optical flow estimation (Lim ICIP'01)
 - Gain FPN reduction (Lim SPIE'02)

Motivation and Outline

- Our group designed a 10,000 frames/s CMOS Digital Pixel Sensor (DPS) chip (Kleinfelder JSSC'01)
- We designed a PC based imaging system around this chip to explore these high frame rate applications
- Outline:
 - Describe the DPS chip
 - Describe the high speed system
 - Examples of the applications

10,000 frames/s DPS Chip (Kleinfelder JSSC'01)

- $0.18 \mu m$ CMOS digital technology
- 352×288 pixels (CIF)
- $9.4\mu \times 9.4\mu$ pixels
- 8 bit single slope ADC and memory/ pixel
- Integrated clock distribution, gray code counter, power cycling control
- 64 bit digital output bus

DPS Pixel

High Speed CMOS Imaging System

- Built around the DPS chip
- Interfaced to PC
- Programmable via Matlab interface
- Runs up to 1,400 frames/s

The PCB

Multiple Non-destructive Capture Mode

Imaging High Dynamic Range Scene

Short Exposure-time Image

Medium Exposure-time Image

Long Exposure-time Image

Application: Dynamic Range Extension

- Capture multiple images non-destructively
- Last-Sample-Before-Saturation Algorithm(Yang JSSC'99): For each pixel use an appropriately scaled version of its last sample before saturation

• Only extends dynamic range at high illumination

- Need to increase SNR for low illumination signals
- Making exposure time longer increases SNR but can cause motion blur
- Developed two pixel-wise techniques:
 - Reduce read noise using weighted average of samples before saturation (Liu SPIE'01)
 - Prevent image blur by detecting motion (Liu ICASSP'01)

65 Image Capture Example

30ms

40ms

50ms

High Dynamic Range Images

LSBS

Estimation and motion-blur prevention

Video Mode with Digital CDS

Application: Optical Flow Estimation

- Optical flow estimation is basis for *many* video applications
- Many of these applications need accurate optical flow estimation
- Using high frame rate sequence, we developed method for accurately estimating optical flow at standard frame rate (Lim ICIP'01)
- Application: Sensor gain Fixed Pattern Noise (FPN) correction (Lim SPIE'02)
 - No existing method for gain FPN correction
 - CDS only removes offset FPN

Gain FPN Correction Example

- Captured 5 frames of eye chart at 200 frames/s using our system
- Used sequence and its optical flow to correct gain FPN

Before FPN Correction

After FPN Correction

Conclusion

- Described experimental high speed CMOS imaging system based on 10,000 frames/s DPS chip
- Used system to demonstrate high frame rate applications to
 - Still imaging: Dynamic range extension and motion blur prevention via multiple non-destructive captures
 - Video-rate imaging: Optical flow estimation and gain FPN correction

DPS Chip Characteristics (Kleinfelder JSSC'01)

Technology	$0.18 \mu m$ 5-metal CMOS
Die size	5×5 mm
Array size	352×288 pixels
Number of transistors	3.8 million
Readout architecture	64-bit (167 MHz)
Max output data rate	>1.33 GB/s
Max continuous frame rate	>10,000 frames/s
Max continuous pixel rate	>1 Gpixels/s
Pixel size	9.4 μ m $ imes$ 9.4 μ m
Photodetector type	nMOS Photogate
Number of transistors/pixel	37
Sensor fill factor	15%

50mW, typical
Per-pixel single-slope
8-bits
\sim 25 μ s, (\sim 20 μ s, min.)
1V
<0.22% (0.56 LSB)
$130 \mathrm{mV/s},~10 \mathrm{nA/cm}^2$
13.6%
$13.1 \mu { m V/e^-}$
0.107V/lux.s