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What is Compressed Sensing?

Compressed sensing refers to the recovery of “high-dimensional but
low-complexity” entities from a limited number of measurements.

Examples: High dimensional but sparse (or nearly sparse) vectors,
large images with gradients (sharp changes) in only a few pixels,
large matrices of low rank, partial realization problem in control
theory.

Manuscript: An Introduction to Compressed Sensing to be
published by SIAM (Society for Industrial and Applied
Mathematics)

Note: Talk will focus only on vector recovery, not matrix recovery.
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Sparse Regression vs. Compressed Sensing

High level objective of compressed sensing: Recover an
unknown sparse or nearly sparse vector x ∈ Rn from m� n linear
measurements of the form y = Ax,A ∈ Rm×n.

Sparse Regression: Given an underdetermined set of linear
equations y = Ax, where A ∈ Rm×n, y ∈ Rm are given, find the
most sparse solution for x.

Difference: In sparse regression, A, y are given, and there need not
be a “true but unknown” x. In compressed sensing, the matrix A
can be chosen by the user.
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Illustrative Application: Decoding Linear Codes

Caution: Nonstandard notation!

Suppose H ∈ Fm×n2 is the parity check matrix of a code. So
u ∈ Fn2 is a code word if and only if Hu = 0. Suppose that u is
transmitted on a noisy channel, and the received signal is
v = u⊕ x, where x is a binary error vector (with limited support).

The vector y = Hv = H(u+ x) = Hx is called the “syndrome” in
coding theory. The problem is to determine the most sparse x that
satisfies y = Hx.

M. Vidyasagar Recent Developments in Compressed Sensing



Problem Formulation
Approach Based on `1-Norm Minimization

Constructon of Measurement Matrices
Numerical Examples
Statistical Recovery

A Non-Iterative Algorithm

Illustrative Application: Maximum Hands-Off Control

Given a linear system

xt+1 = Axt +But, x0 6= 0,

and a final time T , find the most sparse control sequence {ut}T−1
t=0

such that xT = 0 and |ut| ≤ 1 for all t. Note that we want

xT = ATx0 +

T−1∑
t=0

AT−1−tBut = 0.

So we want the most sparse solution of

T−1∑
t=0

AT−1−tBut = −ATx0

while satisfying the constraint |ut| ≤ 1 for all t.
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Preliminaries

Notation: For an integer n, [n] denotes {1, . . . , n}.

If x ∈ Rn, define its “support” as

supp(x) := {i ∈ [n] : xi 6= 0}.

Given an integer k, define the set of k-sparse vectors as

Σk := {x ∈ Rn : |supp(x)| ≤ k}.

Given a norm ‖ · ‖ on Rn, and an integer k, define the k-sparsity
index of x as

σk(x, ‖ · ‖) := min
z∈Σk

‖x− z‖.
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Problem Formulation

Define A ∈ Rm×n as the “measurement map,” and ∆ : Rm → Rn
as the “decoder map.”

Measurement vector y = Ax or y = Ax+ η (noisy measurements).

Definition

The pair (A,∆) achieves robust sparse recovery of order k if
there exist constants C and D such that

‖x−∆(Ax+ η)‖2 ≤ Cσk(x, ‖ · ‖1) +Dε,

where ε is an upper bound for ‖η‖2.
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Implications

In particular, robust sparse recovery of order k implies

With k-sparse vectors and noise-free measurements, we get

∆(Ax) = x, ∀x ∈ Σk,

or exact recovery of k-sparse vectors.

With k-sparse vectors and noisy measurements, we get

‖x−∆(Ax+ η)‖2 ≤ D‖η‖2,

i.e., residual error comparable to that achievable by an
“oracle” that knows the support of x.
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NP-Hardness of Sparse Regression

Let ‖x‖0 denote the “`0-norm,” i.e., the number of nonzero
components of x.

Sparse regression problem: Find most sparse solution of y = Ax.

x̂ = argmin
z
‖z‖0 s.t. Az = y.

This problem is NP-hard!

Reference: Natarajan (1995)
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Convex Relaxation of the Problem: Basis Pursuit

So we replace ‖ · ‖0 by its “convex envelope” (the largest convex
function that is dominated by ‖ · ‖0), which is ‖ · ‖1. The problem
now becomes

x̂ = argmin
z
‖z‖1 s.t. Az = y.

This is called “basis pursuit” by Chen-Donoho-Saunders (1991).

This problem is tractable. But when does it solve the original
problem?
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Restricted Isometry Property

References: Candès-Tao (2005) and other papers by Candès,
Donoho and co-authors.

Definition

A matrix A ∈ Rm×n satisfies the restricted isometry property
(RIP) of order k with constant δk if

(1− δk)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δk)‖u‖22, ∀u ∈ Σk.

Interpretation: Every set of k or fewer columns of A forms a
near-isometry.
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Main Theorem

Given A ∈ Rm×n and y = Ax+ η where ‖η‖2 ≤ ε, define the
decoder

∆(y) = x̂ := argmin
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε.

Theorem

(Cai-Zhang 2014) Suppose that, for some t > 1, the matrix A
satisfies the RIP of order tk with constant δtk <

√
(t− 1)/t. Then

(A,∆) achieves robust sparse recovery of order k.

Theorem

(Cai-Zhang 2014) For t ≥ 4/3, the above bound is tight.
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Probabilistic Method

Let X be a zero-mean, unit-variance sub-Gaussian random
variable. This means that, for some constants γ, ζ, we have that

Pr{|X| > t} ≤ γ exp(−ζt2), ∀t > 0.

Let Φ ∈ Rm×n consist of independent samples of X, and define
A = (1/

√
m)Φ. Then A satisfies the RIP of order k with high

probability (which can be quantified).
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Sample Complexity Estimates

Theorem

Suppose an integer k and real numbers δ, ξ ∈ (0, 1) are specified,
and that A = (1/

√
m)Φ, where Φ ∈ Rm×n consists of independent

samples of a sub-Gaussian random variable X. Then A satisfies the
RIP of order k with constant δ with probability ≥ 1− ξ provided

m ≥ 1

c̃δ2

(
4

3
k ln

en

k
+

14k

3
+

4

3
ln

2

ξ

)
.

Tighter bounds are available for pure Gaussian samples.
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Some Observations

With sub-Gaussian random variables, m = O(k ln(n/k))
measurements suffice.

Any matrix needs to have at least m = O(k ln(n/k))
measurements (Kashin width property).

Ergo, this approach is “order-optimal.”
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The Stings in the Tail

1 No one bothers to specify the constant under the O symbol!
For values of n < 104 or so, m > n! (No compression!)

2 Once a matrix is generated at random, checking whether it
does indeed satisfy the RIP is NP-hard!

3 The matrices have no structure, so CPU time is enormous!

Need to look for alternate (deterministic) approaches.

Several deterministic methods exist, based on finite fields, expander
graphs, algebraic coding, etc. Only a few are discussed here.
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Coherence

Suppose A ∈ Rm×n is column-normalized, i.e., ‖aj‖2 = 1 ∀j ∈ [n].
Then

µ(A) = max
i 6=j
|〈ai, aj〉|

is called the one-column coherence of A.

Lemma

For each k < 1/µ(A)− 1, the matrix A satisfies the RIP of order k
with constant δk < (k − 1) · µ(A).

To construct a matrix that satisfies RIP of order k with constant δ,
we need to have

(k − 1)µ ≤ δ, or µ ≤ δ

k − 1
.
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DeVore’s Construction

Let q be a prime number or a prime power, and let Fq denote the
corresponding finite field with q elements.

Choose an integer r ≥ 3, and let Πr denote the set of all
polynomials of degree r − 1 or less over Fq.

For each polynomial φ ∈ Πr, construct a column vector
aφ ∈ {0, 1}q

2×1 as follows:

The vector aφ ∈ {0, 1}q
2×1 consists of q blocks of q × 1 binary

vectors, each vector containing exactly one “1”, evaluated as
follows.
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DeVore’s Construction (Cont’d)

Enumerate the elements of Fq in some order. If q is a prime
number, then {0, 1, . . . , q − 1} is natural.
Let the indeterminate x vary over Fq. Suppose x is the l-th
element of Fq (in the chosen ordering), and that φ(x) is the
i-th element of Fq. Then the l-th block of aφ has a “1” in
row i and zeros elsewhere.

Example: Let q = 3, Fq = {0, 1, 2}, r = 3, and
φ(x) = 2x2 + 2x+ 1. Then φ(0) = 1, φ(1) = 2, and φ(2) = 1.
Therefore

aφ = [ 0 1 0 0 0 1 0 1 0 ]>.

Define A ∈ {0, 1}q2×qr by

A = [aφ, φ ∈ Πr].
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DeVore’s Theorem

Theorem

(DeVore 2007) If φ, ψ are distinct polynomials in Πr, then

〈aφ, aψ〉 ≤ r − 1.

Corollary

(DeVore 2007) With A as above, the column-normalized matrix
(1/q)A satisfies the RIP of order k with constant δk = (r − 1)/q.
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Number of Measurements Using the DeVore Matrix

We want δtk <
√

(t− 1)/t. Choose t = 1.5 (optimal choice),
δ = 0.5 < 1/

√
3. Also choose r = 3. Then we need m = q2

measurements where

q = max
{
d6k − 4ep, n1/3

}
.

Here dsep denotes the smallest prime number > s.

Number of measurements is O(max{k2, n1/3}), but in practice is
smaller than with probabilistic methods.

It is also much faster due to the sparsity and binary nature of A.
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Construction Based on Chirp Matrices

Let p be a prime, and Zp = Z/(p). For each x, y ∈ Zp, define
Cx,y : Zp → Zp as follows:

Cx,y(t) = (−1)ty exp[iπ(2x+ yt)t/p].

Define C ∈ Cp×p2 by varying t over Zp to generate the rows, and
x, y over Zp to generate the columns.

The matrix C contains only various p-th roots of unity.
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Properties of the Chirp Matrix

Theorem

Suppose p is a prime number. Then

|〈Cx1,y1 , Cx2,y2〉|2 =


p2 if x1 = x2, y1 = y2,
p if y1 6= y2,
0 if y1 = y2, x1 6= x2.

Thus A = (1/
√
p)C has µ(A) = 1/

√
p.

Number of measurements m = d(3k − 2)2ep.

Compare with m = (d6k − 4ep)2 for DeVore’s method, which is
roughly four times larger.
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Sample Complexity Estimates

Parameters Probabilistic Deterministic

n k mG mSG mA mD mC

10,000 5 5,333 28,973 3,492 841 197
10,000 10 8,396 48,089 5,796 3,481 787

100,000 10 10,025 57,260 6,901 3,481 787
100,000 20 17,781 104,733 12,622 16,129 3,371

1,000,000 5 7,009 38,756 4,671 10,201 1,009
1,000,000 30 30,116 177,635 21,407 32,041 7,753
1,000,000 50 47,527 283,042 34,110 94,249 21,911
1,000,000 100 88,781 534,210 64,378 358,801 88,807

For “pure” Gaussian, sub-Gaussian, bipolar random variables,
DeVore and chirp constructions.
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Construction of Vectors

Let n = 104, k = 6, and construct a k-sparse vector x0 ∈ Rn.

supp(x0) = {887, 4573, 4828, 5779, 9016, 9694},

(x0)S =



0.6029
−0.3323
−0.7458

0.1071
0.3198
−0.5214

 , ‖(x0)S‖1 = 2.6293.
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Construction of Vectors (Cont’d)

Construct non-sparse vectors

xi = x0 + εiN (0, 1), i = 1, 2, 3,

where ε1 = 0.02, ε2 = 0.002, ε3 = 0.0002. However, the
components of x0 belonging to the set S were not perturbed. Thus

σ6(x1, ‖ · ‖1) = 159.5404, σ6(x2, ‖ · ‖1) = 15.95404,

σ6(x1, ‖ · ‖1) = 1.595404,

Compare with ‖(x0)S‖1 = 2.6293.
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Plot of True and Non-Sparse Vectors
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Figure: The “true” vector x1 with n = 104, k = 6. It consists of a
k-sparse vector perturbed by additive Gaussian noise with variance
ε1 = 0.02.
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Construction of Noisy Measurements

For each method, a corresponding number of measurements m was
chosen, and a measurement matrix A ∈ Rm×n was constructed.

Each component of Ax was perturbed by additive Gaussian noise
with zero mean and standard deviation of 0.01. The `2-norm of
the error was estimated using this fact.

For each method, an estimate x̂ was constructed as

x̂ = argmin
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε.
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Recovery of Exactly Sparse Vector

For using a measurement matrix consisting of random
Gaussian samples, the number of samples is 5, 785.

For DeVore’s matrix, the prime number q = 37, and
m = q2 = 1, 369.

For the Chirp matrix method, the prime number p = 257, and
m = p = 257.

The CPU time was 14 seconds with DeVore’s matrix, four
minutes with the Chirp matrix, and four hours with Gaussian
samples. This is because the Gaussian samples have no
struture.

All three measurement matrices with `1-norm minimization
recovered x0 perfectly.
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Recovery of Non-Sparse Vector Using DeVore’s Matrix

0 2000 4000 6000 8000 10000

Component Number

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

O
ri
g
in

a
l 
a
n
d
 R

e
c
o
v
e
re

d
 V

e
c
to

rs

Recovery of Non-Sparse Vector Using DeVore Method

True

Recovered

Figure: The true vector x1, and the corresponding recovered vector using
DeVore’s matrix, illustrating “support recovery”.
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Recovery of Non-Sparse Vector Using a Chirp Matrix
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Recovery of Non-Sparse Vector Using Chirp Method
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Figure: The true vector x1, and the corresponding recovered vector using
the chirp matrix. Again the support is recovered.
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Notion of Statistical Recovery

Until now we have studied guaranteed recovery of all sufficiently
sparse vectors, and derived sufficient conditions.

What happens if we settle for statistical recovery of all but a
fraction 1− ε of sparse vectors, with respect to a suitable
probability measure?

The number of samples reduces drastically, from
m = O(k log(n/k)), to m = O(k).

A really superficial overview is given in the next few slides.
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Bound Based on the Rényi Information Dimension

(Reference: Wu-Verdu, T-IT 2012)

Encoder can be nonlinear as well as the decoder.

Unknown x is generated according to a known probability pX
(and is sparse with high probability)

Algorthm is expected to work with high probability.

Statistical recovery is possible if and only if

m ≥ nd̄(pX) + o(n),

where d̄(pX) is the upper Rényi Information Dimension and is
O(k/n).
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Approximate Message Passing

References: Several papers by Donoho et al.

An iterative alternative to `1-norm minimization. Suppose
φ : R→ R is smooth, and define φ : Rn → Rn componentwise.
Let A consist of i.i.d. samples of normal Gaussians. Set x0 = 0,
and then

xt+1 = φ(A>wt + xt),

wt = y −Axt +
1

δ
wt−1(φ′(A>wt−1 + xt−1)),

where φ′ denotes the derivative of φ.

Phase transitions in the δ = m/n, and ρ = k/m space are
comparable to those with `1-norm minimization.
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Bound Based on Descent Cone

Reference: Amelunxen et al., 2014.

Measurement is linear: y = Ax, consisting of i.i.d. samples of
normal Gaussians, and decoder is

x̂ = argmin
z

f(z) s.t. y = Az,

where f : Rn → R is convex. Define the descent cone of f as

D(f, x) :=
⋃
τ>0

{h ∈ Rn : f(x+ τh) ≤ f(x)}.

Define the statistical dimension δ of a cone.
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Bound Based on Descent Cone (Cont’d)

Theorem

Define a(ε) :=
√

8 log(4/ε). With all other symbols as above, if

m ≤ δ(D(f, x))− a(ε)
√
n,

then the decoding algorithm fails with probability ≥ 1− ε. If

m ≥ δ(D(f, x)) + a(ε)
√
n,

then the decoding algorithm succeeds with probability ≥ 1− ε.
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Summary of the Method

Based on expander graphs, and a part of doctoral research of
Mahsa Lotfi.

Unlike `1-norm minimization, this algorithm is noniterative –
one simply “reads off” the unknown vector! Hence hundreds
of times faster than `1-norm minimization.

The measurement matrix is the same as the DeVore
construction, but with about half of the number of
measurements.

Works even with “nearly” sparse vectors, and also with burst
measurement errors.

Noise model is similar to that in error-correcting coding.
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The Measurement Matrix (Same as DeVore)

Notation: dsep denotes the smallest prime number ≥ s.

Given integers n (dimension of unknown vector) and k (sparsity
count), choose a prime number q such that

q = d4k − 2ep, n ≤ qr.

Form DeVore’s measurement matrix A ∈ {0, 1}q2×qr as before.
Define the measurement vector y = Ax.

Recall: For `1-norm minimization, q = d6k − 4ep, or about 1.5
times higher Since m = q2, `1-norm minimization requires roughly
1.52 = 2.25 times more measurements.
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Key Idea: The “Reduced” Vector

The measurement y = Ax ∈ Rq2 . For each index j ∈ [n],
construct a “reduced” vector yj ∈ Rq as follows:

Each column of A contains q elements of 1 and the rest are zero.
For each column j ∈ [qr] = {1, . . . , qr}, identify the q indices
v1(j), . . . , vq(j) corresponding to the locations of the “1” entries.
Define the “reduced” vector ȳ ∈ Rq as

ȳj = [yv1(j) . . . yvq(j)]
>.

Note that the reduced vector picks off different rows of y for each
column index j.
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Illustration of Reduced Vector

Suppose q = 2, and

A =


1 0 0 0 1 1
1 1 0 1 0 0
0 1 1 0 0 1
0 0 1 1 1 0

 ∈ {0, 1}4×6.

Suppose y ∈ R4. Then

ȳ1 = (y1, y2), ȳ2 = (y2, y3), ȳ3 = (y3, y4),

ȳ4 = (y2, y4), ȳ5 = (y1, y4), ȳ6 = (y1, y3).
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Key Theorems of New Method – 1

Theorem

Suppose x ∈ Σk, and let y = Ax. Then

1 If j 6∈ supp(x), then ȳj contains no more than k(r − 1)
nonzero components.

2 If j ∈ supp(x), then at least q − (k − 1)(r − 1) elements of ȳj
equal xj .
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The New Algorithm

Choose q = d2(2k − 1)ep, and construct the DeVore matrix A.
Suppose x ∈ Σk and let y = Ax. Run through j from 1 to n. For
each j, check to see how many nonzero entries ȳj has.

If ȳj has fewer than (q − 1)/2 nonzero entries, then
j 6∈ supp(x).

If ȳj has more than (q + 1)/2 nonzero entries, then
j ∈ supp(x). In this case, at least (q + 1)/2 entries of ȳj will
be equal, and that value is xj ,

Note: No optimization or iterations are required! The nonzero
components of x are simply read off!

The method extends to the case of “burst noise,” where the noise
has limited support.
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Key Theorems of New Method – 2

Theorem

Suppose x ∈ Σk, and that y = Ax+ η where ‖η‖0 ≤M (burst
noise). Then

1 If j 6∈ supp(x), then ȳj contains no more than k(r − 1) +M
nonzero components.

2 If j ∈ supp(x), then ȳj contains at least
q − [(k − 1)(r − 1) +M ] components that are all equal to xj .

Extensions to the case where x is “nearly sparse” but not exactly
sparse can also be proven.
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Comparison of Sample Complexity and Speed

All methods require m = q2 measurements.

Method `1-norm Expander New
Min. Graphs Alg.

Bound: q ≥ 6k − 4 8(2k − 1) 4k − 2

q with k = 6 37 89 29
m with k = 6 1,369 7,921 841

Table: Number of measurements for various approaches with n = 20, 000.

New algorithm is about 200 times faster than `1-norm
minimization and 1,000 times faster than expander graph
(Xu-Hassibi) algorithm.
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Tolerance to Burst Noise

We chose n = 20, 000 and k = 6, constructed A with q = 29 for
new algorithm and q = 37 for `1-norm minimization. We chose a
random vector x ∈ Σk and constructed the measurement vector
Ax. Then we chose M = 6, and perturbed the measurement
vector Ax in M locations with a random number of variance α.

As α is increased, the new algorithm recovers x perfectly no
matter how large α is, whereas `1-norm miniimization fails to
recover the true x.
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Computational Results

New Algorithm `1-norm minimization
Alpha Err. Time Err. Time
10−5 0 0.1335 3.2887e-06 26.8822

10−4 0 0.1325 3.2975e-05 26.6398

10−3 0 0.1336 3.3641e-04 28.1876

10−2 0 0.1357 0.0033 23.1727

10−1 0 0.1571 0.033 28.9145

10 0 0.1409 1.3742 26.6362

20 0 0.1494 1.3967 26.5336

Table: Performance of new algorithm and `1-norm minimization with
additive burst noise
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Some Topics Not Covered

Recovery of group sparse vectors

Matrix recovery

Alternatives to the `1-norm

One-bit compressed sensing

Applications to image recovery, control systems

All of these are covered in the book.
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Some Interesting Open Questions

Caution: Heavily biased by my own preference for deterministic
approaches!

Is there a deterministic procedure for designing measurement
matrices that is order-optimal with m = O(k log n)?

Can deterministic vector recovery be extended seamlessly to
problems of matrix recovery?

Can the partial realization problem of control theory (which is
a problem of completing a Hankel matrix to minimize its
rank) be tackled as a matrix completion problem?
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Questions?
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